skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akhanda, Md_Sabbir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solid-state thermomagnetic modules operating based on the Nernst–Ettingshausen effects are an alternative to conventional solid-state thermoelectric modules. These modules are appropriate for low-temperature applications where the thermoelectric modules are not efficient. Here, we briefly discuss the application, performance, similarities, and differences of thermoelectric and thermomagnetic materials and modules. We review thermomagnetic module design, Nernst coefficient measurement techniques, and theoretical advances, emphasizing the Nernst effect and factors influencing its response in semimetals such as carrier compensation, Fermi surface, mobility, phonon drag, and Berry curvature. The main objective is to summarize the materials design criteria to achieve high thermomagnetic performance to accelerate thermomagnetic materials discovery. 
    more » « less
  2. Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid‐state cooling but their efficiency is hindered by material limitations. Alternative routes based on the Thomson and Nernst effects offer new possibilities. Here, we present a comprehensive investigation of the thermoelectric properties of 1T‐TiSe2, focusing on these effects around the charge density wave transition (≈200 K). The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450 μV K−1at 184 K, surpassing the Seebeck coefficient. Furthermore, 1T‐TiSe2exhibits a remarkably broad temperature range (170–400 K) with a Thomson coefficient exceeding 190 μV K−1, a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges. Additionally, the Nernst coefficient exhibits an unusual temperature dependence, increasing with temperature in the normal phase, which we attribute to bipolar conduction effects. The combination of solid–solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range. 
    more » « less